

Characterization of linearly Lindelöf topological spaces through family of discrete sets

Leandro Fiorini Aurichi, Henry Jose Gullo Mercado*

*Universidade de São Paulo, São Carlos, Brazil

Resumo

Let (X, τ) be a topological space, we say that X is linearly Lindelöf, if every open and increasing covering of X admits a countable subcover. Let \mathscr{A} be the family of discrete subsets of X. For any $A \in \mathscr{A}$, we denote: $A^{\perp} = \{x \in X \setminus A : A \cup \{x\} \notin \mathscr{A}\}$. If $A^{\perp} \neq \emptyset$ we can choose a discrete $\emptyset \neq A_1 \subset A^{\perp}$, in general if $\alpha = \theta + 1$ is a successor ordinal and $A_{\theta}^{\perp} \neq \emptyset$ we can choose a discrete $\emptyset \neq A_{\alpha} \subset A_{\theta}^{\perp}$, if κ is a limit ordinal and $\bigcap_{\alpha < \kappa} A_{\alpha}^{\perp} \neq \emptyset$ we can choose a discrete $\emptyset \neq A_{\kappa} \subset \bigcap_{\alpha < \kappa} A_{\alpha}^{\perp}$. If we continue this procedure until an ordinal μ , we have a discrete chain starting at A: $C_A = \{A_\kappa : \kappa < \mu\}$. We say that C_A collapses if $\bigcap_{\kappa < \mu} A_{\kappa}^{\perp} = \emptyset$, we also say that μ is the length of the chain. For all well ordered discrete sets $D = \{d_{\alpha} : \alpha < \theta\}$ with $cf(\theta) \ge \omega_1$, we denote $D_{\gamma} = \{d_{\alpha} : \gamma \le \alpha < \theta\}$, for all $\gamma < \theta$. In this work we characterize linearly Lindelöf topological spaces, via discrete chains, as follows: let X be a topological space T_1 , then X is linearly Lindelöf if, and only if, all discrete chain such that the cofinality of its length is greater or equal than ω_1 does not collapse and for all well ordered discrete sets $D = \{d_{\alpha} : \alpha < \theta\}$ with $cf(\theta) \ge \omega_1$, we have $\bigcap_{\gamma < \theta} D_{\gamma}^{\perp} = \emptyset.$

Referências

- V. V. Tkachuk, Spaces that are projective with respect to classes of mappings, Transactions of Moscow Mathematical Society, 50 (1988) 139–156.
- [2] A. Dow, M.G. Tkachenko, V. V. Tkachuk and R. G. Wilson, *Topologies generated by discrete subspaces*, Glasnik Math. J. **37** (2002) 189–212.

- [3] O. T. Alas, L. R. Junqueira and R. G. Wilson, The degree of weakly discretely generated spaces, Acta Math. Hungar., 143 (2) (2014), 453– 465.
- [4] A. Bella and P. Simon, Spaces which are generated by discrete sets, Topology Appl., 135 (2004), 87–99.
- [5] Petra Staynova, A comparison of Lindelof-type covering properties of topological spaces, Rose-Hulman Undergraduate Mathematics Journal, volume 12 (2011), arXiv: 1212.2863v1 [math.GN] 12 Dec 2012.